
pyfarm.core Documentation
Release 0.8.4

Oliver Palmer, Guido Winkelmann

July 04, 2014

Contents

1 pyfarm.core package 3
1.1 Submodules . 3
1.2 Module contents . 11

2 Indices and tables 13

Python Module Index 15

i

ii

pyfarm.core Documentation, Release 0.8.4

This package contains some shared libraries and objects which other parts of PyFarm, such as pyfarm.master and
pyfarm.agent, use directly.

Note: While this code could be used directly, it’s primarily intended to be inside of other parts of PyFarm.

Contents

Contents 1

http://pyfarm.readthedocs.org/projects/pyfarm-master/en/latest/modules/pyfarm.master.html#module-pyfarm.master
http://pyfarm.readthedocs.org/projects/pyfarm-agent/en/latest/modules/pyfarm.agent.html#module-pyfarm.agent

pyfarm.core Documentation, Release 0.8.4

2 Contents

CHAPTER 1

pyfarm.core package

1.1 Submodules

1.1.1 pyfarm.core.config module

Configuration Object

Basic module used for reading configuration data into PyFarm in various forms.

const BOOLEAN_TRUE set of values which will return a True boolean value from
read_env_bool()

const BOOLEAN_FALSE set of values which will return a False boolean value from
read_env_bool()

class pyfarm.core.config.Configuration(name, version=None)
Bases: builtins.dict

Main object responsible for finding, loading, and merging configuration data. By default this class does nothing
until load() is called. Once this method is called Configuration class will populate itself with data
loaded from the configuration files. The configuration files themselves can be loaded from multiple location
depending on the system’s setup. For example on Linux you might end up attempting to load:

•The default configuration as provided by PyFarm’s source.

•/etc/pyfarm/agent/agent.yml

•/etc/pyfarm/agent/1/agent.yml

•/etc/pyfarm/agent/1.2/agent.yml

•/etc/pyfarm/agent/1.2.3/agent.yml

•~/.pyfarm/agent/agent.yml

•~/.pyfarm/agent/1/agent.yml

•~/.pyfarm/agent/1.2/agent.yml

•~/.pyfarm/agent/1.2.3/agent.yml

•etc/pyfarm/agent/agent.yml

•etc/pyfarm/agent/1/agent.yml

•etc/pyfarm/agent/1.2/agent.yml

3

pyfarm.core Documentation, Release 0.8.4

•etc/pyfarm/agent/1.2.3/agent.yml

Configuration will only attempt to load data from files which exist on the file system when load() is
called. If multiple files exist the data will be loaded from each file with the successive data overwriting the value
from the previously loaded configuration file. So if you have two files containing the same data:

•/etc/pyfarm/agent/agent.yml

env:
a: 0

foo: 1
bar: true

•etc/pyfarm/agent/1.2.3/agent.yml

env:
a: 1
b: 1

foo: 0

You’ll end up with a single merged configuration. Please note that the only keys which will be merged in the
configuration are the env key. Configuration files are meant to store simple data and while it can be used to
store more complicate data it won’t merge any other data structures.

env:
a: 1
b: 1

foo: 0
bar: true

Variables

• DEFAULT_SYSTEM_ROOT (string) – The system level directory that we should look for
configuration files in. This path is platform dependent:

– Linux - /etc/

– Mac - /Library/

– Windows - %ProgramData%. An environment variable that
varies depending on the Windows version. See Microsoft’s docs:
https://www.microsoft.com/security/portal/mmpc/shared/variables.aspx

The value built here will be copied onto the instance as system_root

• DEFAULT_USER_ROOT (string) – The user level directory that we should look for con-
figuration files in. This path is platform dependent:

– Linux/Mac - ~ (home directory)

– Windows - %APPDATA%. An environment variable that varies
depending on the Windows version. See Microsoft’s docs:
https://www.microsoft.com/security/portal/mmpc/shared/variables.aspx

The value built here will be copied onto the instance as user_root

• DEFAULT_FILE_EXTENSION (string) – The default file extension of the configuration
files. This will default to .yml and will be copied to file_extension when the class
is instanced.

4 Chapter 1. pyfarm.core package

https://docs.python.org/3.4/library/string.html#module-string
https://www.microsoft.com/security/portal/mmpc/shared/variables.aspx
https://docs.python.org/3.4/library/string.html#module-string
https://www.microsoft.com/security/portal/mmpc/shared/variables.aspx
https://docs.python.org/3.4/library/string.html#module-string

pyfarm.core Documentation, Release 0.8.4

• DEFAULT_LOCAL_DIRECTORY_NAME (string) – A directory local to the current
process which we should search for configuration files in. This will default to etc and
will be copied to local_dir when the class is instanced.

• DEFAULT_PARENT_APPLICATION_NAME (string) – The base name of the parent
application. This used used to build child directories and will default to pyfarm.

• DEFAULT_ENVIRONMENT_PATH_VARIABLE (string) – A environment variable to
search for a configuration path in.

• DEFAULT_TEMP_DIRECTORY_ROOT – The directory which will

Parameters

• name (string) – The name of the configuration itself, typically ‘master’ or ‘agent’. This may
also be the name of a package such as ‘pyfarm.agent’. When the package name is provided
we can usually automatically determine the version number.

• version (string) – The version the version of the program running.

_expandvars(value)
Performs variable expansion for value. This method is run when a string value is returned from get()
or __getitem__(). The default behavior of this method is to recursively expand variables using sources
in the following order:

•The environment, os.environ

•The environment (from the configuration), env

•Other values in the configuration

•~ to the user’s home directory

For example, the following configuration:

foo: foo
bar: bar
foobar: $foo/$bar
path: ~/$foobar/$TEST

Would result in the following assuming $TEST is an environment variable set to somevalue and the
current user’s name is user:

{
"foo": "foo",
"bar": "bar",
"foobar": "foo/bar",
"path": "/home/user/foo/bar/somevalue"

}

DEFAULT_ENVIRONMENT_PATH_VARIABLE = ‘PYFARM_CONFIG_ROOT’

DEFAULT_FILE_EXTENSION = ‘.yml’

DEFAULT_LOCAL_DIRECTORY_NAME = ‘etc’

DEFAULT_PARENT_APPLICATION_NAME = ‘pyfarm’

DEFAULT_SYSTEM_ROOT = ‘/etc’

DEFAULT_TEMP_DIRECTORY_ROOT = ‘/tmp/pyfarm’

DEFAULT_USER_ROOT = ‘/home/docs’

MAX_EXPANSION_RECURSION = 10

1.1. Submodules 5

https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/string.html#module-string

pyfarm.core Documentation, Release 0.8.4

directories()
Returns a list of platform dependent directories which may contain configuration files.

files()
Returns a list of configuration files.

get(key, default=None)
Overrides dict.get() to provide internal variable expansion through _expandvars().

load(environment=None)
Loads data from the configuration files. Any data present in the env key in the configuration files will
update environment

Parameters environment (dict) – A dictionary to load data in the env key from the configura-
tion files into. This would typically be set to os.environ so the environment itself could
be updated.

split_version(sep=’.’)
Splits self.version into a tuple of individual versions. For example 1.2.3 would be split into
[’1’, ’1.2’, ’1.2.3’]

pyfarm.core.config.read_env(envvar, default=<object object at 0x7f27092ac170>,
warn_if_unset=False, eval_literal=False,
raise_eval_exception=True, log_result=True, desc=None)

Lookup and evaluate an environment variable.

Parameters

• envvar (string) – The environment variable to lookup in os.environ

• default (object) – Alternate value to return if envvar is not present. If this is instead set to
NOTSET then an exception will be raised if envvar is not found.

• warn_if_unset (bool) – If True, log a warning if the value being returned is the same as
default

• eval_literal – if True, run literal_eval() on the value retrieved from the environment

• raise_eval_exception (bool) – If True and we failed to parse envvar with
literal_eval() then raise a EnvironmentKeyError

• log_result (bool) – If True, log the query and result to INFO. If False, only log the
query itself to DEBUG. This keyword mainly exists so environment variables such as
PYFARM_SECRET or PYFARM_DATABASE_URI stay out of log files.

• desc (string) – Describes the purpose of the value being returned. This may also be read in
at the time the documentation is built.

pyfarm.core.config.read_env_bool(*args, **kwargs)
Wrapper around read_env() which converts environment variables to boolean values. Please see the docu-
mentation for read_env() for additional information on exceptions and input arguments.

Raises

• AssertionError – raised if a default value is not provided

• TypeError – raised if the environment variable found was a string and could not be con-
verted to a boolean.

pyfarm.core.config.read_env_number(*args, **kwargs)
Wrapper around read_env() which will read a numerical value from an environment variable. Please see the
documentation for read_env() for additional information on exceptions and input arguments.

6 Chapter 1. pyfarm.core package

https://docs.python.org/3.4/library/stdtypes.html#dict.get
https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/functions.html#object
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
http://pyfarm.readthedocs.org/projects/pyfarm-master/en/latest/environment.html#envvar-PYFARM_DATABASE_URI
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/exceptions.html#AssertionError
https://docs.python.org/3.4/library/exceptions.html#TypeError

pyfarm.core Documentation, Release 0.8.4

Raises TypeError raised if we either failed to convert the value from the environment variable or
the value was not a float, integer, or long

pyfarm.core.config.read_env_strict_number(*args, **kwargs)
Strict version of read_env_number() which will only return an integer

Parameters number_type – the type of number(s) this function must return

Raises

• AsssertionError – raised if the number_type keyword is not provided (required to check
the type on output)

• TypeError – raised if the type of the result is not an instance of number_type

1.1.2 pyfarm.core.enums module

Enums

Provides enum values for certain aspect of PyFarm. See below for more detailed information.

Operating System

Describes an operating system type.

Table 1.1: OperatingSystem

Attribute Description
LINUX operating system on agent is a Linux variant
WINDOWS operating system on agent is a Windows variant
MAC operating system on agent is an Apple OS variant

Agent State

The last known state of the remote agent, used for making queue decisions and locking off resources.

Attribute Description
OFFLINE agent cannot be reached
ONLINE agent is waiting for work
DISABLED agent is online but cannot accept work
RUNNING agent is currently processing work
ALLOC special internal state used when the agent entry is being built

Work State

The state a job or task is currently in. These values apply more directly to tasks as job statuses are built from task
status values.

Attribute Description
PAUSED this task cannot be assigned right now but can be once unpaused
RUNNING work is currently being processed
DONE work is finished (previous failures may be present)
FAILED work as failed and cannot be continued

1.1. Submodules 7

https://docs.python.org/3.4/library/exceptions.html#TypeError
https://docs.python.org/3.4/library/exceptions.html#TypeError

pyfarm.core Documentation, Release 0.8.4

Use Agent Address

Describes which address should be used to contact the agent

Attribute Description
LOCAL use the address which was provided by the agent
REMOTE use the address which we received the request from
HOSTNAME disregard both the local IP and the remote IP and use the hostname
PASSIVE agent cannot be contacted but will still request work and process jobs

const PY_MAJOR the major Python version

const PY_MINOR the minor Python version

const PY_VERSION a tuple containing the major and minor Python versions

const PY3 True if running Python 3

const PY2 True if running Python 2

const PY26 True if running Python 2.6

const PY27 True if running Python 2.7

const NOTSET Instance of the object class, mainly used when None is actually a valid value

const STRING_TYPES A tuple of string types, provided for Python 3 backwards compatibility

const NUMERIC_TYPES A tuple of numeric types, provided for Python 3 backwards compatibility

const INTEGER_TYPES A tuple of integer types, provided for Python 3 backwards compatibility

const BOOLEAN_TRUE A set containing strings and other objects representing True under some
conditions. Generally used by pyfarm.core.utility.convert.bool()

const BOOLEAN_FALSE A set containing strings and other objects representing False under some
conditions. Generally used by pyfarm.core.utility.convert.bool()

const NONE A set containing strings and other objects which represent None under some conditions.
Generally used by pyfarm.core.utility.convert.none()

const INTERACTIVE_INTERPRETER True when we’re running inside an interactive interpreter
such as a Python shell like IPython. This value will also be True if there’s an active debugger.

const OS The current os type, the value will map to one of the values in OperatingSystem

const POSIX True if OS in (OperatingSystem.LINUX, OperatingSystem.MAC)

const WINDOWS True if OS == OperatingSystem.WINDOWS

const LINUX True if OS == OperatingSystem.LINUX

const MAC True if OS == OperatingSystem.MAC

pyfarm.core.enums.Enum(classname, **kwargs)
Produce an enum object using namedtuple()

>>> Foo = Enum("Foo", A=1, B=2)
>>> assert Foo.A == 1 and Foo.B == 2
>>> FooTemplate = Enum("Foo", A=int, instance=False)
>>> Foo = FooTemplate(A=1)
>>> assert Foo.A == 1

Parameters

• classname (str) – the name of the class to produce

8 Chapter 1. pyfarm.core package

https://docs.python.org/3.4/library/stdtypes.html#str

pyfarm.core Documentation, Release 0.8.4

• to_dict – a callable function to add to the named tuple for converting the internal values into
a dictionary

• instance (bool) – by default calling Enum() will produce an instanced namedtuple()
object, setting instance to False will instead produce the named tuple without instancing
it

class pyfarm.core.enums.Values(*args, **kwargs)
Bases: pyfarm.core.enums.Values

Stores values to be used in an enum. Each time this class is instanced it will ensure that the input values are of
the correct type and unique.

NUMERIC_TYPES = (<class ‘int’>,)

check_uniqueness = True

pyfarm.core.enums.cast_enum(enum, enum_type)
Pulls the requested enum_type from enum and produce a new named tuple which contains only the requested
data

>>> from pyfarm.core.enums import Enum, Values
>>> FooBase = Enum("Foo", A=Values(int=1, str="1")
>>> Foo = cast_enum(FooBase, str)
>>> assert Foo.A == "1"
>>> Foo = cast_enum(FooBase, int)
>>> assert Foo.A == 1
>>> assert Foo._map == {"A": 1, 1: "A"}

Warning: This function does not perform any kind of caching. For the most efficient usage it should only
be called once per process or module for a given enum and enum_type combination.

pyfarm.core.enums.operating_system(plat=’linux’)
Returns the operating system for the given platform. Please note that while you can call this function directly
you’re more likely better off using values in pyfarm.core.enums instead.

1.1.3 pyfarm.core.testutil module

class pyfarm.core.testutil.TestCase(methodName=’runTest’)
Bases: unittest.case.TestCase

ORIGINAL_ENVIRONMENT = {}

TEMPDIR_PREFIX = ‘’

add_cleanup_path(path)

classmethod mktempdir()

classmethod remove(path)

setUp()

classmethod setUpClass()

tearDown()

temp_directories = set()

pyfarm.core.testutil.requires_ci(func)

pyfarm.core.testutil.rm(path)

1.1. Submodules 9

https://docs.python.org/3.4/library/functions.html#bool

pyfarm.core Documentation, Release 0.8.4

pyfarm.core.testutil.skip_on_ci(func)

1.1.4 pyfarm.core.utility module

Utilities

General utility functions that are not specific to individual components of PyFarm.

class pyfarm.core.utility.ImmutableDict(iterable=None, **kwargs)
Bases: builtins.dict

A basic immutable dictionary that’s built on top of Python’s standard dict class. Once __init__() has
been run the contents of the instance can no longer be modified

clear(*args, **kwargs)

pop(*args, **kwargs)

popitem(*args, **kwargs)

setdefault(*args, **kwargs)

update(*args, **kwargs)

class pyfarm.core.utility.PyFarmJSONEncoder(skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separa-
tors=None, default=None)

Bases: json.encoder.JSONEncoder

encode(o)

class pyfarm.core.utility.convert
Bases: builtins.object

Namespace containing various static methods for converting data.

Some staticmethods are named the same as builtin types. The name indicates the expected result but the stat-
icmethod may not behave the same as the equivalently named Python object. Read the documentation for each
staticmethod to learn the differences, expected input and output.

static bool(value)
Converts value into a boolean object. This function mainly exits so human-readable
booleans such as ‘yes’ or ‘y’ can be handled in a single location. Internally it does not
use bool() and instead checks value against pyfarm.core.enums.BOOLEAN_TRUE and
pyfarm.core.enums.BOOLEAN_FALSE.

Parameters value – The value to attempt to convert to a boolean. If this value is a string it will
be run through .lower().strip() first.

Raises ValueError Raised if we can’t convert value to a true boolean object

static bytetomb(value)
Convert bytes to megabytes

>>> convert.bytetomb(10485760)
10.0

static list(value, sep=’, ‘, strip=True, filter_empty=True)
Converts value into a list object by splitting on sep.

Parameters

10 Chapter 1. pyfarm.core package

https://docs.python.org/3.4/library/stdtypes.html#dict
https://docs.python.org/3.4/library/exceptions.html#ValueError

pyfarm.core Documentation, Release 0.8.4

• value (str) – The string we should convert into a list

• sep (str) – The string that we should split value by.

• strip (bool) – If True, strip extra whitespace from the results so ’foo, bar’ becomes
[’foo’, ’bar’]

• filter_empty (bool) – If True, any result that evaluates to False will be removed so
’foo„’ would become [’foo’]

static mbtogb(value)
Convert megabytes to gigabytes

>>> convert.mbtogb(2048)
2.0

static none(value)
Converts value into None. This function mainly exits so human-readable values such as ‘None’ or ‘null’
can be handled in a single location. Internally this checks value against pyfarm.core.enums.NONE

Parameters value – The value to attempt to convert to None. If this value is a string it will be
run through .lower().strip() first.

Raises ValueError Raised if we can’t convert value to None

static ston(value, types=(<class ‘int’>, <class ‘float’>, <class ‘complex’>))
Converts a string to an integer or fails with a useful error message

Parameters value (string) – The value to convert to an integer

Raises

• ValueError – Raised if value could not be converted using literval_eval()

• TypeError – Raised if value was not converted to a float, integer, or long

1.2 Module contents

1.2.1 PyFarm Core

Core library used by other components of PyFarm.

1.2. Module contents 11

https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/stdtypes.html#str
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/functions.html#bool
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/string.html#module-string
https://docs.python.org/3.4/library/exceptions.html#ValueError
https://docs.python.org/3.4/library/exceptions.html#TypeError

pyfarm.core Documentation, Release 0.8.4

12 Chapter 1. pyfarm.core package

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

13

pyfarm.core Documentation, Release 0.8.4

14 Chapter 2. Indices and tables

Python Module Index

p
pyfarm.core, 11
pyfarm.core.config, 3
pyfarm.core.enums, 7
pyfarm.core.testutil, 9
pyfarm.core.utility, 10

15

	pyfarm.core package
	Submodules
	Module contents

	Indices and tables
	Python Module Index

